

# **IMPAC**<sub>®</sub> FIX Fast Anchoring and adhesive

### **DESCRIPTION:**

FIX Fast Anchoring and adhesive system has been specially formulated as a high-performance, two component adhesive anchor system for threaded rods and reinforcing bars in uncracked concrete to suit transportation applications.

### **BASE MATERIAL**

Uncracked concrete

### **FEATURES**

- · Fixing close to free edges
- Versatile range of embedment depths
- Anchoring without expansion forces
- Component volume ratio of 1:1
- · Extended working time
- High load capacities

#### Testing

EP1 DoT has been tested according to ASTM C 881 Type I, II, III, IV, Class C, Grade 3

#### Shelf Life

Cartridges should be stored in their original packaging, the correct way up, in cool conditions (+50°F to +77°F) out of direct sunlight. When stored correctly, the product shelf life will be 24 months from the date of manufacture.

#### Health & Safety

For health and safety information, please refer to the relevant Safety Data Sheet.

### Guide Cartridge Coverage Data





USGBC and related logo is a trademark owned by the U.S. Green Building Council and is used by permission.

#### Manufacturer

Polimeros Adhesivos y Derivados S.A. de C.V. Frida Kahlo No. 195, Torre Vértice piso 17 Col. Valle Oriente San Pedro Garza García, Nuevo León CP 66269

#### Working & Loading Times

| Cartridge Temperature | T Work<br>(minutes) | Base Material<br>Temperature | T Load<br>(hours) |
|-----------------------|---------------------|------------------------------|-------------------|
| +50°E to +50°E        | 20                  | +40°F to +49°F               | 24                |
| +50 F (0 +59 F        | 20                  | +50°F to +59°F               | 12                |
| +59°F to +72°F        | 15                  | +59°F to +72°F               | 8                 |
| +72°F to +77°F        | 11                  | +72°F to +77°F               | 7                 |
| +77°F to +86°F        | 8                   | +77°F to +86°F               | 6                 |
| +86°F to +95°F        | 6                   | +86°F to +95°F               | 5                 |
| +95°F to +104°F       | 4                   | +95°F to +104°F              | 4                 |
| +104°F                | 3                   | +104°F                       | 3                 |

T Work is the typical time to gel at the highest temperature in the range T Load is the typical time to reach full capacity

| Anchor Size:                       |                     | (in.)  | 5/16  | 3/8   | 1/2   | 5/8   | 3/4   | 1     | 1 1/4 |
|------------------------------------|---------------------|--------|-------|-------|-------|-------|-------|-------|-------|
| Drill Hole Diameter:               |                     | (in.)  | 3/8   | 1/2   | 9/16  | 3/4   | 7/8   | 1 1/8 | 1 3/8 |
| Embedment Depth:                   |                     | (in.)  | 2 3/8 | 2 3/8 | 2 3/4 | 3 1/8 | 3 3/4 | 4     | 5     |
| Estimated<br>Number of<br>Fixings* | Cartridge<br>Volume | 250ml  | 68    | 38    | 26    | 12    | 7     | 4     | 2     |
|                                    |                     | 600ml  | 176   | 99    | 67    | 33    | 20    | 11    | 6     |
|                                    |                     | 1500ml | 455   | 256   | 175   | 86    | 53    | 30    | 16    |

\*Number of fixings assumes 30ml wastage in initial extrusion and holes filled to 3/4 full

| Anchor Size:                       |                     | (in.)  | 5/16  | 3/8   | 1/2  | 5/8   | 3/4   | 1     | 1 1/4  |
|------------------------------------|---------------------|--------|-------|-------|------|-------|-------|-------|--------|
| Drill Hole Diameter:               |                     | (in.)  | 3/8   | 1/2   | 9/16 | 3/4   | 7/8   | 1 1/8 | 1 3/8  |
| Embedment Depth:                   |                     | (in.)  | 3 1/8 | 3 3/4 | 5    | 6 1/4 | 7 1/2 | 10    | 12 1/2 |
| Estimated<br>Number of<br>Fixings* | Cartridge<br>Volume | 250ml  | 51    | 24    | 14   | 6     | 3     | 1     | 0      |
|                                    |                     | 600ml  | 134   | 62    | 37   | 16    | 10    | 4     | 2      |
|                                    |                     | 1500ml | 346   | 162   | 96   | 43    | 26    | 12    | 6      |

\*Number of fixings assumes 30ml wastage in initial extrusion and holes filled to 3/4 full

# www.impacusa.com

Planta José E. González No. 900 Zona Industrial Santa Catarina, Nuevo León C.P. 66350 C (52) (81) 5000.2020 info@impac.com.mx



## **Physical Properties**

| Property                        | Result       | Method        |
|---------------------------------|--------------|---------------|
| Consistency                     | Pass         | ASTM C 881    |
| Gel Time                        | 30 minutes   | ASTM C 881    |
| Bond Strength (2 day cure)      | 2000 psi     | ASTM C 882    |
| Bond Strength (14 day cure)     | 2500 psi     | ASTM C 882    |
| Compressive Strength (7 day)    | >10,000 psi  | ASTM D 695    |
| Compressive Modulus (7 days)    | 400000 psi   | ASTM D 695    |
| Flexural Strength (7 days)      | 4,350 psi    | ASTM D 790 @  |
| Flexural Strength (14 days)     | 6,960 psi    | +20°C / +72°F |
| Water Absorption                | 0.08%        | ASTM D 570    |
| Heat Deflection Temperature     | 122°F        | ASTM D 468    |
| Linear Coefficient of Shrinkage | 0.0003 in/in | ASTM D 2566   |
| Shore D (15hrs)                 | 85           | ASTM D2240    |
| VOC                             | 5g/L         | ASTM D2369    |

### **Installation Specification**

| Property                   | Symbol              | Unit  |                                                                                                |        |        |                     |        |        |        |
|----------------------------|---------------------|-------|------------------------------------------------------------------------------------------------|--------|--------|---------------------|--------|--------|--------|
| Threaded Rod Diameter      | d <sub>a</sub>      | in    | 3/8                                                                                            | 1/2    | 5/8    | 3/4                 | 7/8    | 1      | 1-1/4  |
| Drill Bit Diameter         | d。                  | in    | 1/2                                                                                            | 9/16   | 3/4    | 7/8                 | 1      | 1-1/8  | 1-3/8  |
| Cleaning Brush Size        | d,                  | -     | S14H/F                                                                                         | S16H/F | S22H/F | S24H/F              | S27H/F | S31H/F | S38H/F |
| Rebar Size                 | d <sub>a</sub>      | in    | #3                                                                                             | #4     | #5     | #6                  | #7     | #8     | #10    |
| Drill Bit Diameter         | d <sub>。</sub>      | in    | 9/16                                                                                           | 5/8    | 3/4    | 7/8                 | 1      | 1-1/8  | 1-3/8  |
| Cleaning Brush Size        | d <sub>b</sub>      | -     | S16H/F                                                                                         | S18H/F | S22H/F | S27H/F              | S31H/F | S35H/F | S43H/F |
| Minimum Embedment Depth    | h <sub>ef,min</sub> | in    | 3                                                                                              | 4      | 5      | 6                   | 7      | 8      | 10     |
| Maximum Embedment Depth    | h <sub>ef,max</sub> | in    | 4 1/2                                                                                          | 6      | 7 1/2  | 9                   | 10 1/2 | 12     | 15     |
| Minimum Concrete Thickness | h <sub>min</sub>    | in    |                                                                                                |        |        | 2.0 h <sub>ef</sub> |        |        |        |
| Critical Anchor Spacing    | S <sub>cr</sub>     | in    |                                                                                                |        |        | 2.0 c <sub>ac</sub> |        |        |        |
| Critical Edge Distance     | C <sub>ac</sub>     | in    | $c_{ac} = h_{ef} * \left(\frac{\tau_{uncr}}{1160}\right)^{0.4} * [3.1 - 0.7 \frac{h}{h_{ef}}]$ |        |        |                     |        |        |        |
| Maximum Tightening Torque  | T <sub>inst</sub>   | ft.lb | 15                                                                                             | 30     | 60     | 100                 | 125    | 150    | 200    |

need not be taken as larger than 2.4; and

is the characteristic bond strength and need not be taken as larger than:

 $\tau_{uncr} = \frac{k_{uncr} \sqrt{(h_{ef} * f'_c)}}{\pi * d_a}$ 



### Allowable Steel Strength for Threaded Rods

|          |          | Carbor<br>ASTM F 155<br>(A307 | Carbon Steel<br>ASTM F 1554 Grade 36<br>(A307 Gr.C) |                           | Carbon Steel<br>ASTM A 193 B7 |                           | s Steel<br>593 CW       | Stainless Steel<br>ASTM F 593 SH |                         |
|----------|----------|-------------------------------|-----------------------------------------------------|---------------------------|-------------------------------|---------------------------|-------------------------|----------------------------------|-------------------------|
| Anchor I | Diameter | Allowable                     | Allowable                                           | Allowable                 | Allowable                     | Allowable                 | Allowable               | Allowable                        | Allowable               |
| (II      | 1.)      | Iension, N <sub>all</sub>     | Shear, V <sub>all</sub>                             | Iension, N <sub>all</sub> | Shear, V <sub>all</sub>       | Iension, N <sub>all</sub> | Shear, V <sub>all</sub> | Iension, N <sub>all</sub>        | Shear, V <sub>all</sub> |
| 2/0"     | lb       | 2,110                         | 1,080                                               | 4,550                     | 2,345                         | 3,630                     | 1,870                   | 4,190                            | 2,160                   |
| 5/0      | kN       | 9.4                           | 4.8                                                 | 20.2                      | 10.4                          | 16.1                      | 8.3                     | 18.6                             | 9.6                     |
| 1/0"     | lb       | 3,750                         | 1,930                                               | 8,100                     | 4,170                         | 6,470                     | 3,330                   | 7,450                            | 3,840                   |
| 1/2      | kN       | 16.7                          | 8.6                                                 | 36.0                      | 18.5                          | 28.8                      | 14.8                    | 33.1                             | 17.1                    |
| 5/9"     | lb       | 5,870                         | 3,030                                               | 12,655                    | 6,520                         | 10,130                    | 5,220                   | 11,640                           | 6,000                   |
| 5/6      | kN       | 26.1                          | 13.5                                                | 56.3                      | 29.0                          | 45.1                      | 23.2                    | 51.8                             | 26.7                    |
| 2/4"     | lb       | 8,460                         | 4,360                                               | 18,220                    | 9,390                         | 12,400                    | 6,390                   | 15,300                           | 7,880                   |
| 3/4      | kN       | 37.6                          | 19.4                                                | 81.0                      | 41.8                          | 55.2                      | 28.4                    | 68.1                             | 35.1                    |
| 7/0"     | lb       | 11,500                        | 5,930                                               | 24,800                    | 12,780                        | 16,860                    | 8,680                   | 20,830                           | 10,730                  |
| 110      | kN       | 51.2                          | 26.4                                                | 110.3                     | 56.8                          | 75.0                      | 38.6                    | 92.7                             | 47.7                    |
| 1"       | lb       | 15,020                        | 7,740                                               | 32,400                    | 16,690                        | 22,020                    | 11,340                  | 27,210                           | 14,020                  |
|          | kN       | 66.8                          | 34.4                                                | 144.1                     | 74.2                          | 97.9                      | 50.4                    | 121.0                            | 62.4                    |
| 1 1/4"   | lb       | 23,480                        | 12,100                                              | 50,610                    | 26,070                        | 34,420                    | 17,730                  | 38,470                           | 19,820                  |
| 1 - 1/4  | kN       | 104.4                         | 53.8                                                | 225.1                     | 116.0                         | 153.1                     | 78.9                    | 171.1                            | 88.2                    |

Allowable Tension, Nall =  $0.33 \times f_u \times nominal cross sectional area Allowable Shear, Vall = <math>0.17 \times f_u \times nominal cross section area$ 

| Anchor     | E rechte dies eint            |                            | Strength                  |                       |         |                          |                           |         |                           |  |
|------------|-------------------------------|----------------------------|---------------------------|-----------------------|---------|--------------------------|---------------------------|---------|---------------------------|--|
| Diameter   | Embedment                     |                            | Tension (Ib)              |                       |         |                          | Shear                     | (lb)    |                           |  |
| (in.)      | Depth (in.)                   | f' <sub>c</sub> = 2,500psi | f' <sub>c</sub> = 4,000ps | i f' <sub>c</sub> = 8 | ,000psi | f' <sub>c</sub> = 2,500p | si f' <sub>c</sub> = 4,00 | 00psi 1 | " <sub>c</sub> = 8,000psi |  |
|            | 3                             | 1373                       | 1439                      | 1                     | 542     | 1830                     | 1918                      | 3       | 2056                      |  |
| 3/8"       | 3 3/4                         | 1716                       | 1798                      | 1                     | 928     | 2288                     | 2398                      | 3       | 2570                      |  |
|            | 4 1/2                         | 2059                       | 2158                      | 2                     | 313     | 2746                     | 2878                      | 3       | 3084                      |  |
|            | 4                             | 2470                       | 2589                      | 2                     | 775     | 3294                     | 3453                      | 3       | 3700                      |  |
| 1/2"       | 5                             | 3088                       | 3237                      | 3                     | 469     | 4118                     | 4316                      | 6       | 4626                      |  |
|            | 6                             | 3706                       | 3884                      | 4                     | 163     | 4941                     | 5179                      | )       | 5551                      |  |
|            | 5                             | 4194                       | 4396                      | 4396 4711             |         | 5592                     | 586                       |         | 6282                      |  |
| 5/8"       | 6 1/4                         | 5243                       | 5495                      | 5                     | 889     | 6990                     | 7327                      | 7       | 7853                      |  |
|            | 7 1/2                         | 6291                       | 6594                      | 7                     | 067     | 8389                     | 8792                      | 2       | 9423                      |  |
|            | 6                             | 6619                       | 6938                      | 7                     | 436     | 8826                     | 925                       |         | 9915                      |  |
| 3/4"       | 7 1/2                         | 8274                       | 8672                      | 9                     | 295     | 11032                    | 1156                      | 3       | 12393                     |  |
|            | 9                             | 9929                       | 10407                     | 11                    | 154     | 13239                    | 1387                      | 6       | 14872                     |  |
|            | 7                             | 9067                       | 9504                      | 10                    | 186     | 12090                    | 1267                      | 3       | 13581                     |  |
| 7/8"       | 8 3/4                         | 11334                      | 11880                     | 12                    | 2733    | 15113                    | 1584                      | 0       | 16977                     |  |
|            | 10 1/2                        | 13601                      | 14256                     | 15                    | 5279    | 18135                    | 1900                      | 8       | 20372                     |  |
|            | 8                             | 12007                      | 12584                     | 13                    | 3488    | 16009                    | 1677                      | 9       | 17984                     |  |
| 1"         | 10                            | 15008                      | 15731                     | 16                    | 6860    | 20011                    | 2097                      | 4       | 22480                     |  |
|            | 12                            | 18010                      | 18877                     | 20                    | 232     | 24014                    | 2516                      | 9       | 26976                     |  |
|            | 10                            | 17995                      | 18861                     | 20                    | )215    | 23993                    | 2514                      | 8       | 26953                     |  |
| 1 - 1/4"   | 12 1/2                        | 22494                      | 23576                     | 25                    | 5268    | 29992                    | 3143                      | 5       | 33691                     |  |
|            | 15                            | 26993                      | 28292                     | 30                    | 322     | 35990                    | 3772                      | 2       | 40430                     |  |
| Temperatu  | Temperature Reduction Factors |                            |                           |                       |         |                          |                           |         |                           |  |
| In-service | Temperature (°F               | -)                         | 40                        | 68                    | 110     | 130                      | 150                       | 168     | 176                       |  |
| Reduction  | Factor* (-)                   |                            | 1.00                      | 1.00                  | 0.90    | 0.70                     | 0.50                      | 0.40    | 0.30                      |  |

### Allowable Load Data in Shear and Tension - Threaded Rods

1. The above values represent mean ultimate values and allowable working loads. The allowable working loads have been reduced using a safety factor of 4.0 for tension and 3.0 for shear, however, in some cases, such as life safety, safety factors of 10.0 or higher may be necessary.

2. Allowable loads must be checked against steel capacity. The lowest value controls.

3. Tabulated data is applicable to single anchors in normal weight concrete unaffected by edge or spacing reduction factors. Values are valid for anchors installed into dry concrete in holes drilled with a hammer drill and ANSI carbide drill bit.

4. Linear interpolation is allowed. Data must not be extrapolated.



### Allowable Steel Strength for Rebar

|       | <      | Carbon Steel CAN/CS                    | SA-G30.18 Gr.400                     |
|-------|--------|----------------------------------------|--------------------------------------|
| Reba  | r Size | Allowable Tension,<br>N <sub>all</sub> | Allowable Shear,<br>V <sub>all</sub> |
| 1014  | lb     | 4,016                                  | 2,069                                |
| TOIVI | kN     | 17.9                                   | 9.2                                  |
| 15M   | lb     | 8,052                                  | 4,148                                |
| TOIVI | kN     | 35.8                                   | 18.5                                 |
| 2014  | lb     | 11,960                                 | 6,161                                |
| 20101 | kN     | 53.2                                   | 27.4                                 |
| 25M   | lb     | 19,975                                 | 10,290                               |
| 201/1 | kN     | 88.9                                   | 45.8                                 |
| 2014  | lb     | 28,121                                 | 14,486                               |
| 30101 | kN     | 125.1                                  | 64.4                                 |
| 25M   | lb     | 40,089                                 | 20,652                               |
| 33101 | kN     | 178.3                                  | 91.9                                 |

### Allowable Steel Strength for Rebar

| >>   | <      | Carbon Steel ASTN                   | / A 615 Grade 60                     |  |
|------|--------|-------------------------------------|--------------------------------------|--|
| Reba | r Size | Allowable Tension, N <sub>all</sub> | Allowable Shear,<br>V <sub>all</sub> |  |
| #2   | lb     | 3,280                               | 1,690                                |  |
| #3   | kN     | 14.6                                | 7.5                                  |  |
| #4   | lb     | 5,831                               | 3,004                                |  |
| #4   | kN     | 25.9                                | 13.4                                 |  |
| #5   | lb     | 9,111                               | 4,693                                |  |
| #5   | kN     | 40.5                                | 20.9                                 |  |
| #0   | lb     | 13,121                              | 6,759                                |  |
| #0   | kN     | 58.4                                | 30.1                                 |  |
| #7   | lb     | 17,859                              | 9,200                                |  |
| #1   | kN     | 79.4                                | 40.9                                 |  |
| #0   | lb     | 23,326                              | 12,016                               |  |
| #0   | kN     | 103.8                               | 53.4                                 |  |
| #10  | lb     | 37,623                              | 19,381                               |  |
| #10  | kN     | 167.4                               | 86.2                                 |  |

Tension =  $0.33 \times f_u \times nominal cross sectional area$  $Shear = <math>0.17 \times f_u \times nominal cross section area$ 

 Above values for reinforcing steel assume the design method is the same as a post-installed adhesive anchor, under the principles of anchor design (failure modes will be concrete breakout, pryout, steel failure, or adhesive bond) and not under the principles of reinforcing steel design (failure modes are typically splitting failure, inadequatebar development etc..).

#### Allowable Load Data in Shear and Tension - Reinforcing Bars

| Anchor                        | Embedment       |                            | ŀ                         | Allowable Co          | ncrete Ca | pacity / Bond Stre         | ngth                   |           |                            |
|-------------------------------|-----------------|----------------------------|---------------------------|-----------------------|-----------|----------------------------|------------------------|-----------|----------------------------|
| Diameter                      | Depth (in )     |                            | Tension (Ib)              |                       |           |                            | Shear                  | (lb)      |                            |
|                               | Deptil (III.)   | f' <sub>c</sub> = 2,500psi | f' <sub>c</sub> = 4,000ps | i f' <sub>c</sub> = 8 | ,000psi   | f' <sub>c</sub> = 2,500psi | f' <sub>c</sub> = 4,00 | 0psi      | f' <sub>c</sub> = 8,000psi |
|                               | 3               | 1349                       | 1414                      | 1:                    | 515       | 1798                       | 1885                   | 5         | 2020                       |
| #3                            | 3 3/4           | 1686                       | 1767                      | 18                    | 394       | 2248                       | 2356                   | 2356 2526 |                            |
|                               | 4 1/2           | 2032                       | 2121                      | 22                    | 273       | 2698                       | 2828                   | 3         | 3031                       |
|                               | 4               | 2470                       | 2589                      | 27                    | 775       | 3294                       | 3453                   | 3         | 3700                       |
| #4                            | 5               | 3088                       | 3237                      | 34                    | 169       | 4118                       | 4316                   | 6         | 4626                       |
|                               | 6               | 3706                       | 3884                      | 4                     | 163       | 4941                       | 5179                   | )         | 5551                       |
|                               | 5               | 4194                       | 4396                      | 4                     | 711       | 5592                       | 5861                   |           | 6282                       |
| #5                            | 6 1/4           | 5243                       | 5495                      | 58                    | 389       | 6990                       | 7327                   | 7         | 7853                       |
|                               | 7 1/2           | 6291                       | 6594                      | 70                    | 067       | 8389                       | 8792                   | 2         | 9423                       |
|                               | 6               | 6025                       | 6315                      | 6                     | 769       | 8034                       | 8421                   |           | 9025                       |
| #6                            | 7 1/2           | 7532                       | 7894                      | 84                    | 461       | 10043                      | 1052                   | 6         | 11282                      |
|                               | 9               | 9038                       | 9473                      | 10                    | 153       | 12051                      | 1263                   | 1         | 13538                      |
|                               | 7               | 9067                       | 9504                      | 10                    | 186       | 12090                      | 1267                   | 2         | 13581                      |
| #7                            | 8 3/4           | 11334                      | 11880                     | 12                    | 733       | 15113                      | 1584                   | 0         | 16977                      |
|                               | 10 1/2          | 13601                      | 14256                     | 15                    | 279       | 18135                      | 1900                   | 8         | 20371                      |
|                               | 8               | 11843                      | 12413                     | 13                    | 304       | 15791                      | 1655                   | 1         | 17739                      |
| #8                            | 10              | 14804                      | 15517                     | 16                    | 630       | 19739                      | 2068                   | 9         | 22174                      |
|                               | 12              | 17765                      | 18620                     | 19                    | 957       | 23687                      | 2482                   | 7         | 26609                      |
|                               | 10              | 13862                      | 14529                     | 15                    | 572       | 18483                      | 1937                   | 2         | 20762                      |
| #10                           | 12 1/2          | 17327                      | 18161                     | 19                    | 465       | 23103                      | 2421                   | 5         | 25953                      |
| 15 20793 21                   |                 | 21794                      | 23                        | 358                   | 27724     | 2905                       | 8                      | 31144     |                            |
| Temperature Reduction Factors |                 |                            |                           |                       |           |                            |                        |           |                            |
| In-service                    | Temperature (°I | =)                         | 40                        | 68                    | 110       | 130                        | 150                    | 168       | 176                        |
| Reduction                     | Factor* (-)     |                            | 1.00                      | 1.00                  | 0.90      | 0.70                       | 0.50                   | 0.40      | 0.30                       |

1. The above values represent mean ultimate values and allowable working loads. The allowable working loads have been reduced using a safety factor of 4.0 for tension and 3.0 for shear, however, in some cases, such as life safety, safety factors of 10.0 or higher may be necessary.

2. Allowable loads must be checked against steel capacity. The lowest value controls.

3. Tabulated data is applicable to single anchors in normal weight concrete unaffected by edge or spacing reduction factors. Values are valid for anchors installed into dry concrete in holes drilled with a hammer drill and ANSI carbide drill bit.

4. Linear interpolation is allowed. Data must not be extrapolated.



| Anchor Size                     | Drilled<br>Hole Size            | Brush<br>Size | Nozzle<br>Type | Extension Tube<br>Required? | Resin Stopper<br>Required? | Notes                                     |
|---------------------------------|---------------------------------|---------------|----------------|-----------------------------|----------------------------|-------------------------------------------|
| <sup>3</sup> / <sub>8</sub> ″   | 1/_"                            | S14H/F        | Q              | Y1 > 3.5″ h <sub>ef</sub>   | N                          |                                           |
| <sup>1</sup> / <sub>2</sub> "   | <sup>9</sup> / "                | S16H/F        | Q              | Y1 > 3.5″ h <sub>ef</sub>   | N                          |                                           |
| 5/ <sub>8</sub> ″               | <sup>3</sup> / <sub>4</sub> ″   | S22H/F        | Q/QH           | Y2 > 10″ h <sub>ef</sub>    | RS18 > 10″ h <sub>ef</sub> | QH nozzle required at h <sub>ef</sub> >8" |
| <sup>3</sup> / <sub>4</sub> ″   | 7/ <mark>8</mark> ″             | S24H/F        | QH             | Y2 > 10″ h <sub>ef</sub>    | RS18 > 10″ h <sub>ef</sub> |                                           |
| 7/ <sub>8</sub> ″               | 1″                              | S27H/F        | QH             | Y2 > 10″ h <sub>ef</sub>    | RS22 > 10″ h <sub>ef</sub> |                                           |
| 1″                              | 1 <sup>1</sup> / <sub>8</sub> ″ | S31H/F        | QH             | Y2 > 10″ h <sub>ef</sub>    | RS22 > 10″ h <sub>ef</sub> |                                           |
| 1 <sup>1</sup> / <sub>4</sub> ″ | 1 <sup>3</sup> / <sub>8</sub> ″ | S38H/F        | QH             | Y2 > 10″ h <sub>ef</sub>    | RS30 > 10″ h <sub>ef</sub> |                                           |

### Installation Accessories - Threaded Bar

Note: The hand pump is limited to a maximum anchor size of 5/8" (M16) threaded rod or #5 (Ø16mm) rebar and a maximum embedment depth of 10" (254mm).

### Installation Accessories - Reinforcing Bar

| Anchor Size | Drilled<br>Hole Size            | Brush<br>Size | Nozzle<br>Type | Extension Tube<br>Required? | Resin Stopper<br>Required? | Notes                                       |
|-------------|---------------------------------|---------------|----------------|-----------------------------|----------------------------|---------------------------------------------|
| #3          | 9/ <b>″</b><br>16               | S16H/F        | Q              | Y1 > 3.5″ h <sub>ef</sub>   | N                          |                                             |
| #4          | <sup>5</sup> / <sub>8</sub> ″   | S18H/F        | Q/QH           | Y1 > 3.5″ h <sub>ef</sub>   | N                          | QH nozzle required at h <sub>ef</sub> >3.5" |
| #5          | <sup>3</sup> / <sub>4</sub> ″   | S22H/F        | Q/QH           | Y2 > 10″ h <sub>ef</sub>    | RS18 > 10″ h <sub>ef</sub> | QH nozzle required at h <sub>ef</sub> >8"   |
| #6          | 7/ <mark>8</mark> ″             | S27H/F        | QH             | Y2 > 10″ h <sub>ef</sub>    | RS18 > 10″ h <sub>ef</sub> |                                             |
| #7          | 1″                              | S31H/F        | QH             | Y2 > 10″ h <sub>ef</sub>    | RS22 > 10″ h <sub>ef</sub> |                                             |
| #8          | 1 <sup>1</sup> / <sub>8</sub> ″ | S35H/F        | QH             | Y2 > 10″ h <sub>ef</sub>    | RS22 > 10″ h <sub>ef</sub> |                                             |
| #10         | 1 <sup>3</sup> / <sub>8</sub> " | S43H/F        | QH             | Y2 > 10″ h <sub>ef</sub>    | RS30 > 10″ h <sub>ef</sub> |                                             |

Note: The hand pump is limited to a maximum anchor size of 5/8" (M16) threaded rod or #5 (Ø16mm) rebar and a maximum embedment depth of 10" (254mm).

### Key:

### Extension Tubes:

- Y1 Required: 3/8'' diameter fitted to Q
- Y2 Required: 9/16" diameter fitted to QH
- N Not Required

### **Resin Stoppers:**

- N Not Required
- RS18 Use 18mm dia resin stopper
- RS22 Use 22mm dia resin stopper
- RS30 Use 30mm dia resin stopper



### Installation Method (Solid Substrates)

1. Drill hole to required depth using a hammer drill with the drill bit that is appropriate to match the hole diameter as stated.

2. Insert the air lance to the bottom of the hole anddepress the trigger for 2 seconds. The compressed air used should be at a minimum pressure of 6bar / 90psi and should be free from oil and / or water. Repeat the operation. If using the hand pump, give two blowing operations.

3. Select the correct size brush. Ensure that the brush is in good condition and check that the diameter of the brush is correct for the size of the drilled hole. Insert the brush to the bottom of the hole and pull out using a back and forth twisting motion. Repeat the operation.

4. Repeat 2

5. Repeat 3

6. Repeat 2

7. Select the appropriate static mixer nozzle for the installation and screw onto the mouth of the cartridge. Insert the cartridge into a good quality extrusion gun after checking that the extrusion gun is in good working order.

8. Extrude the first part of the cartridge to waste until an even colour has been achieved without streaking in the resin.

9. If necessary, attach extension tubing and resin stopper.

10. Insert the mixer nozzle to the bottom of the hole. Begin to extrude the resin and slowly withdraw the mixer nozzle from the hole ensuring that there are no air voids as the mixer nozzle is withdrawn. Fill the hole to approximately  $\frac{1}{2}$  to  $\frac{3}{4}$  full and remove the mixer nozzle and cartridge completely.

11. Take the steel element of the anchor. This should be free from oil or other release agents. Insert the steel element to the bottom of the hole using a back and forth twisting motion. Any excess resin should be expelled from the hole evenly around the steel element.

12. Clean any excess resin from around the mouth of the hole.

13. Leave the anchor to cure. Do not disturb the anchor until the appropriate working time has elapsed depending on the substrate conditions and ambient temperature.

14. Attach the fixture as required.





### **Overhead Substrate Installation Method**

1. Using the SDS Hammer Drill with a carbide tipped drill bit of the appropriate size, drill the hole to suit the anchor.

2. a) Select the correct Air Lance, insert to the bottom of the hole and depress the trigger for 2 seconds. The compressed air must be clean – free from water and oil – and at a minimum pressure of 90psi (6bar). Perform the blowing operation twice.
b) If a Manual Pump is to be used, complete the blowing operation as above using the full stroke of the pump and blow the hole clean twice.

3. Select the correct size Hole Cleaning Brush. Ensure that the brush is in good condition and the correct diameter. Insert the brush to the bottom of the hole and withdraw with a twisting motion. There should be positive interaction between the steel bristles of the brush and the sides of the drilled hole. Perform the brushing operation twice.

4. Repeat 2 (a) or (b)

5. Repeat 3

6. Repeat 2 (a) or (b)

7. Select the appropriate static mixer nozzle and attach to the cartridge. Check the Dispensing Tool is in good working order. Place the cartridge into the dispensing tool.

Note: The QH nozzle is in two sections. One section contains the mixing elements and the other section is an extension piece. Connect the extension piece to the mixing section by pushing the two sections firmly together until a positive engagement is felt.

8. Extrude some resin to waste until an even-colored mixture is extruded, The cartridge is now ready for use.

9. As specified in the Installation Accessories Table, attach an extension tube with resin stopper (if required) to the end of the mixing nozzle with a push fit. (The extension tubes may be pushed into the resin stoppers and are held in place with a coarse internal thread).

10. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resin until the hole is approximately <sup>3</sup>/<sub>4</sub> full and remove the nozzle from the hole.









